'); })();

变频器控制电机_变频器控制电机的控制方法

变频器控制电机主要是根据电动机的特性参数及电动机运转要求,对电动机进行提供电压、电流、频率进行控制从而达到负载的要求。

变频器控制电机主要是根据电动机的特性参数及电动机运转要求,对电动机进行提供电压、电流、频率进行控制从而达到负载的要求。

变频器控制电机

变频器控制电机常见的主要有四种分别是:U/f恒定控制、转差频率控制、矢量控制、直接转矩控制。

1、U/f恒定控制

U/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通量保持一定,在一个比较宽的调速范围内,电动机的效率,功率因数不下降。

因为是控制电压(V)与频率(F)之比,称为U/f控制。

但恒定U/f控制存在的主要问题就是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化;

其次是无法准确的控制电动机的实际转速。由于恒U/f变频器是转速开环控制,设定值为定子频率也就是理想空载转速;

而电动机的实际转速由转差率所决定,所以U/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。

2、转差频率控制

转差频率是施加于电动机的交流电源频率与电动机速度的差频率。根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。

转差频率控制实质上就是通过控制转差频率来控制转矩和电流的。

转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。

与U/f控制相比,其加减速特性和限制过电流的能力得到提高。另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。

然而要达到自动控制系统稳态控制,还达不到良好的动态性能。

变频器控制电机

3、矢量控制

矢量控制,也称磁场定向控制。它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。

而由此开创了交流电动机和等效直流电动机的先河。矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。

通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;

It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。

矢量控制方法的出现,使异步电动机变频调速在电动机的调速领域里的处于优势地位。

但是,矢量控制技术需要对电动机参数进行正确估算,如何提高参数的准确性是一直研究的话题。

4、直接转矩控制

1985年,德国鲁尔大学的DePenbrock教授提出了直接转矩控制理论,该技术在很大程度上解决了矢量控制的不足;

它不是通过控制电流,磁链等量间接控制转矩,而是把转矩直接作为被控量来控制。

转矩控制的优越性在于:转矩控制是控制定子磁链,在本质上并不需要转速信息,控制上对除定子电阻外的所有电机参数变化鲁棒性良好;

所引入的定子磁链观测器能很容易估算出同步速度信息,因而能方便的实现无速度传感器,这种控制被称为无速度传感器直接转矩控制。 

有的现场使用变频器控制电机会出现漏电问题,漏电电压有几十伏到200伏不等,在这里针对此故障的原因进行理论的分析和说明如下。

漏电问题产生的原因:

我们都知道电动机的三相定子绕组流过电流产生旋转磁场,根据磁电感应的原理,电动机的外壳就会产生感应电动势;

此电动势的大小就取决于变频器IGBT的开关频率的大小,由于高性能的控制要求高的开关频率,其开关速度很快,则DV/DT偏大;同时这个感应电动势就偏大,人触摸上就有电击的感觉。

理论上IGBT的开关速度越快,电机外壳上的感应电动势就越高,而变频器对电机的控制精度和响应就越高,人触摸之后被电的感觉就越高;

反之,IGBT的开关频率慢,感应电就小,人触摸的感觉就小,所以国内的低端变频器设计的开关频率偏低,控制电机后感应电小,人摸上没啥感觉,但其控制性较差,动态响应较慢。

漏电问题的解决方案:

为了避免这个问题的发生,在硬件设计的时候,就加入了感应电浪涌滤波器电路,并将浪涌滤波器的接地端于变频器的外壳相连;

同时在变频器的配线说明中,要求将电机的接地端同变频器的接地B相连,将输入电源的地(大地)同变频器的接地A相连;

从而使电机的感应电通过电机与变频器的接地和变频器与电源的接地线形成回路,使电机的地变频器的地和电源的地在同一电位上;

他们之间的电位差是为0伏电压,这样人站在大地上面接触到电机的外壳、设备的机架、变频器的外壳就不会有被电的感觉了。

以上就是关于变频器控制电机的介绍,更多资讯请关注本站WAM机械网!