'); })();

振动时效设备_振动时效设备的原理及使用方法

振动时效设备的实质是以共振的形式给工件施加附加动应力,当附加动应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内部的残余应力,并使其尺寸精度达到稳定。

振动时效设备的实质是以共振的形式给工件施加附加动应力,当附加动应力与残余应力叠加后,达到或超过材料的屈服极限时;

工件发生微观或宏观塑性变形,从而降低和均化工件内部的残余应力,并使其尺寸精度达到稳定。 

振动时效设备

振动时效设备主要有激振器、传感器、控制器三部分组成。

激振器

激振器主要有调速电机、偏心块和偏心箱组成,电机的转速及升降的速度是由控制器来控制的,电机内部带有测速装置,将电机的实际转速测定后输给微机,以实现对电机的转速反馈控制,工作的振动时效处理。

电动机带动偏心量可调的偏心块运转,产生一定的周期激振力,激振力通过偏心箱作用在被时效的工件上,以实现对工作的振动时效处理。所以激振器是振动时效的执行部分,对工件进行振动时效处理。

控制器

控制器一般由CPU板、控制板、外围硬件、显示板和打印机等组成。

原有的控制器一般是通过大量的电子元件之间的控制实现控制器的最基本的控制功能,振动时效装置将这种控制改用计算机程序来代替,这样电子元件的个数减少2/3。

同时在程序中编有一个振动时效专家系统,帮助使用者来确定各种时效参数。

所以控制器是振动时效设备的心脏,它的主要功能是控制激振器上的电动机按操作者得指令要求运转,并把测得的有关数据给予显示和打印,控制器的技术指标代表着整体设备的水平。

传感器

传感器将工件的实际振动变成电信号传输给微机处理,帮助微机实现对工件的振动监视,用来测试工件的振动情况。

振动时效设备

振动时效设备的原理:

1、 从宏观的角度分析,振动时效设备使零件产生塑性变形,降低和均化残余应力并提高材料的抗变形能力,无疑是导致零件尺寸精度稳定的基本原因。

由振动时效设备的加载试验结果可知,振动时效设备件的抗变形能力不仅高于未经时效的零件,也高于经热时效处理的零件。

2、 从微观方面分析,振动时效设备可视为一种以循环载荷的形式施加于零件上的一种附加的动应力。

3、 从错位、晶格滑移等金属学理论上解释,其主要观点是振动时效设备处理过程实际上是通过在工件的共振状态下,给工件的每一部位(晶格)施加一定的动能量。

如果施加的这个能量值与微观组织本身原有的能量值之和,足以克服微观组织周围的井势(恢复平衡的束缚力),则微观区域必然会产生塑性变形。

使产生残余应力的歪曲晶格得以慢慢地恢复平衡状态,使应力集中处的错位得以滑移并重新钉扎,达到消除和均化残余应力的目的。

 

振动时效设备的使用方法:

1、振动时效设备的原理振动时效是将一个具有偏心重块的点击系统(激振器)刚性的固定在被振构件上,对构件施加一交变的周期外力。

当这一周期外力与残余应力叠加达到或超过材料的屈服极限时,就会使构件局部产生塑性变形或晶格滑移,从而降低和均化残余应力,达到稳定尺寸不变形之目的

2、振前准备阶段操作者可根据需要振动构件的几何形状尺寸、大小、吨位、长宽高的比例等,用专用胶垫对构件进行支撑。

将振动时效配套激振器用专用卡具刚性的固定在适当部位,卡具需拧紧,防止振动时松动,造成电机损坏。拾感器吸在构件的振幅较大处。

激振器的档位应根据构件的振幅从小到大进行调整,偏心的紧固螺丝用内六角扳手拧紧,防止滑档。

3、振动时效设备的操作步骤振动时效设备具有手动、自动、预置等功能。对于陌生的构件为了寻找其固有频率和共振峰,应先用手动工作模式,以确定其基本工艺参数。

当发现前面板上的G值突然增高或听到较大的嗡嗡声时表明已进入构件的共振区。此时需要慢调电位器观察G值的变化情况。

当随着转速的上升G值升高到某一数值后降了下来,而且随着转速的升高,G值越来越小,此时应停止旋动电位器,并将电位器选回到已看到的G值最高处。

记住当前电机转速值(取整数),也就是此被振工件的共振峰值。如果G值过小,可以停机增大电机的偏心档位,一般G值在“3.0G”至“15G”之间为适宜。

4、振动时效激振器档位调节激振器主要由永磁直流电机和偏心箱两部分组成,为被振工件的振动源。靠改变两块偏心块的角度产生不同的激振力,施加给被振构件。

调节方法为:将配带的内六角扳手插入箱体上方的孔内,用螺丝刀转动箱体一端有档位刻度盘的轴头,当找到偏心块上方的沉头内六角螺丝时;

将其松开(切记未调整好档位前不要将伴手抽出,以免偏心块转动而找不到沉孔),转动轴,当指示箭头指向所需刻度时,锁紧内六角,调档完成。

 

以上就是关于振动时效设备的介绍,更多资讯请关注本站WAM机械网!