'); })();

塑料技术_塑料增韧的三大技术

如今,改性塑料在国民生活中扮演的角色越来越重要,尤其在汽车、家电等领域发挥着不可替代的作用。而对于门类众多的改性塑料技术而言,塑料增韧技术一直被学术和工业界研究和关注,因为材料的韧性往往对产品的应用起着决定性的影响。

如今,改性塑料在国民生活中扮演的角色越来越重要,尤其在汽车、家电等领域发挥着不可替代的作用。

而对于门类众多的改性塑料技术而言,塑料增韧技术一直被学术和工业界研究和关注,因为材料的韧性往往对产品的应用起着决定性的影响。

塑料技术

广义的塑料定义指具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。

狭义的塑料定义是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。

塑料为合成的高分子化合物,可以自由改变形体样式。塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:

①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;

⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。

塑料可区分为热固性与热可塑性二类,前者无法重新塑造使用,后者可一再重复生产。

塑料高分子的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。

有些高分子带有支链,称为支链高分子,属于线型结构。有些高分子虽然分子间有交联,但交联较少,称为网状结构,属于体型结构。

两种不同的结构,表现出两种相反的性能。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。

体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。

塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。 

塑料技术

一、塑料韧性的性能表征

刚性越大材料越不容易发生形变,韧性越大则越容易发生形变

韧性与刚性相对,是反映物体形变难易程度的一个属性,刚性越大材料越不容易发生形变,韧性越大则越容易发生形变。

通常,刚性越大,材料的硬度、拉伸强度、拉伸模量(杨氏模量)、弯曲强度、弯曲模量均较大;反之,韧性越大,断裂伸长率和冲击强度就越大。

冲击强度表现为样条或制件承受冲击的强度,通常泛指样条在产生破裂前所吸收的能量。冲击强度随样条形态、试验方法及试样条件表现不同的值,因此不能归为材料的基本性质。

不同的冲击试验方法所得到的结果是不能进行比较的

冲击试验的方法很多,依据试验温度分:有常温冲击、低温冲击和高温冲击三种;依据试样受力状态,可分为弯曲冲击-简支梁和悬臂梁冲击、拉伸冲击、扭转冲击和剪切冲击;

依据采用的能量和冲击次数,可分为大能量的一次冲击和小能量的多次冲击试验。不同材料或不同用途可选择不同的冲击试验方法,并得到不同的结果,这些结果是不能进行比较的。

二、塑料增韧机理及影响因素

(一)银纹-剪切带理论

在橡胶增韧塑料的共混体系中,橡胶颗粒的作用主要有两个方面:

一方面,作为应力集中的中心,诱发基体产生大量的银纹和剪切带;

另一方面,控制银纹的发展使银纹及时终止而不致发展成破坏性的裂纹。

银纹末端的应力场可以诱发剪切带而使银纹终止。当银纹扩展到剪切带时也会阻止银纹的发展。

在材料受到应力作用时大量的银纹和剪切带的产生和发展要消耗大量的能量,从而使得材料的韧性提高。银纹化宏观表现为应力白发现象,而剪切带则与细颈产生相关,其在不同塑料基体中表现不同。

例如,HIPS基体韧性较小,银纹化,应力发白,银纹化体积增加,横向尺寸基本不变,拉伸无细颈;

增韧PVC,基体韧性大,屈服主要由剪切带造成,有细颈,无应力发白;HIPS/PPO,银纹、剪切带都占有相当比例,细颈和应力发白现象同时产生。

(二)影响塑料增韧效果的因素主要有三点

1、基体树脂的特性

研究表明,提高基体树脂的韧性有利于提高增韧塑料的增韧效果,提高基体树脂的韧性可通过以下途径实现:

增大基体树脂的分子量,使分子量分布变得窄小;通过控制是否结晶以及结晶度、晶体尺寸和晶型等提高韧性。例如,PP中加入成核剂提高结晶速率,细化晶粒,从而提高断裂韧性。

2、增韧剂的特性和用量

A.增韧剂分散相粒径的影响——对于弹性体增韧塑料,基体树脂的特性不同,弹性体分散相粒径的最佳值也不相同。例如,HIPS中橡胶粒径最佳值为0.8-1.3μm,ABS最佳粒径为0.3μm左右,PVC改性的ABS其最佳粒径为0.1μm左右。

B.增韧剂用量的影响——增韧剂的加入量存在一个最佳值,这与粒子间距参数有关;

C.增韧剂玻璃化转变温度的影响——一般弹性体的玻璃化温度越低,增韧效果越好;

D.增韧剂与基体树脂界面强度的影响——界面粘结强度对增韧效果的影响不同体系有所不同;

E.弹性体增韧剂结构的影响——与弹性体类型、交联度等有关。

3、两相间的结合力

两相间具备良好的结合力,可以使得应力发生时可以在相间进行有效的传递从而消耗更多的能量,宏观上塑料的综合性能就越好,其中尤以冲击强度的改善最为显著。

通常这种结合力可以理解为两相之间的相互作用力,接枝共聚和嵌段共聚就是典型的增加两相结合力的方法,不同的是它们通过化学合成的方法形成了化学键,如接枝共聚物HIPS、ABS,嵌段共聚物SBS、聚氨酯。

对于增韧剂增韧塑料而言,属于物理共混的方法,但是其原理是一样的。理想的共混体系应是两组分既部分相容又各自成相,相间存在一界面层。

在界面层中两种聚合物的分子链相互扩散,有明显的浓度梯度,通过增大共混组分间的相容性,使其具备良好的结合力,进而增强扩散使界面弥散,加大界面层的厚度。

而这,即是塑料增韧亦是制备高分子合金的关键技术之所在——高分子相容技术。

三、塑料增韧剂有哪些?如何划分?

(一)塑料常用的增韧剂如何划分

1、橡胶弹性体增韧:EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所用塑料树脂的增韧改性;

2、热塑性弹性体增韧:SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂;

3、核-壳共聚物及反应型三元共聚物增韧:ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工程塑料以及耐高温高分子合金增韧;

4、高韧性塑料共混增韧:PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径;

5、其它方式增韧:纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等;

(二)在实际的工业生产中,改性塑料的增韧大概分以下情况:

1、合成树脂本身韧性不足,需要提高韧性以满足使用需求,如GPPS、均聚PP等;

2、大幅度提高塑料的韧性,实现超韧化、低温环境长期使用的要求,如超韧尼龙;

3、对树脂进行了填充、阻燃等改性后引起了材料的性能下降,此时必须进行有效的增韧。

通用塑料一般都是通过自由基加成聚合而得,分子主链及侧链不含极性基团,增韧时添加橡胶粒子及弹性体粒子即可获得较好的增韧效果

;而工程塑料一般是由缩合聚合而得,分子链的侧链或端基含有极性基团,增韧时可通过加入官能团化的橡胶或弹性体粒子较高的韧性。

常用树脂的增韧剂种类:

一般而言,塑料在受到外力作用时以界面脱黏、空洞化、基体剪切屈服的过程吸收、耗散能量。

除了非极性塑料树脂增韧时可以直接加入与其相容性好的弹性体粒子(相似相容原理)时,其它极性树脂都需要有效的增容才能实现最终增韧的目的。

前面提到的几类接枝共聚物作为增韧剂时,都会与基体产生强烈的相互作用,例如:

(1) 带环氧官能团型增韧机理:环氧基团开环后与聚合物端羟基、羧基或胺基发生加成反应;

(2) 核壳型增韧机理:外层官能团与组分充分相容,橡胶起到增韧效果;

(3) 离聚体型增韧机理:借助金属离子与高分子链的羧酸根之间的络合作用形成物理交联网络,从而起到增韧的作用。

综上,塑料增韧无论对于结晶性塑料还是无定形塑料同等重要,而从通用塑料、工程塑料到特种工程塑料其耐热性逐渐提高,成本价格也不断攀升,这样就对增韧剂的耐热性、耐老化性等提出了更高的要求。

同时也是对塑料改性增韧技术一次大的考验,而最重要的也是最关键的一条就是和基体及组分保持良好的相容性。

以上就是关于塑料技术的介绍,更多资讯请关注本站WAM机械网!